渋谷教育学園渋谷中入試の解体新書 | 過去問データに基づく算数傾向分析と対策

『渋谷教育学園渋谷中学入試の解体新書』とは?

渋谷教育学園渋谷中学の直近6年間の入試を解体・徹底分析し、一般の方からは非常に見えづらい入試および入試問題の特徴を明らかにすることを通じて、世間一般で言われている常識とは異なる考察をお伝えし、入試突破にあたっての体系的な指針を提供することを目的としております。
入試対策において「全ての科目、全ての分野、全てのポイントを対策すること」は時間と能力に余裕があればそれがベストです、でもそれはあくまでも理想論です。
現実は、時間との戦い・屈強なライバルたちの戦いであり、その為には、時間対効果が高いと考えられる勉強を入試突破に向けて戦略的に行う必要があります。まだ志望校対策に腰を据えて取り組む前段階である5年生や、追加の学習の余裕がない6年生前半でも、志望校を意識し、頻出単元の応用・発展技術には積極的に手を伸ばしていくことで、6年生後半の志望校別特訓クラスのスタート時点でライバルと数段の差をつけることもできるでしょう。渋谷教育学園渋谷中突破の頂に向けて最短・最速で登って頂く為に、是非ご活用頂ければ幸いです。

渋谷教育学園渋谷中学の最新入試の問題や解説動画速報、難易度・傾向分析、偏差値や受験人数などの基本情報は以下からご覧いただけます。

関連記事

配信中!〜この記事を見て分かること〜渋谷教育学園渋谷中学校の2月1日実施、2024年度 第1回入試を踏まえた★ 問題PDF(第2回入試も掲載予定)★ 難易度/傾向分析と算数解説動画 by 最難関合格率8割超講師★ 入試[…]

渋谷教育学園渋谷中学入試の基本データ

渋谷教育学園渋谷中学偏差値(サピックス/四谷大塚/日能研)

第1回

 サピックス四谷大塚日能研
2025
2024男 61
女 62
男 67
女 68
男 69
女 69
2023男 58
女 61
男 67
女 70
男 68
女 68
2022男 59
女 62
男 66
女 69
男 67
女 67
2021男 59
女 61
男 66
女 69
男 67
女 67
2020男 58
女 60
男 66
女 69
男 66
女 69

第2回

 サピックス四谷大塚日能研
2025
2024男 63
女 62
男 69
女 71
男 69
女 69
2023男 62
女 62
男 68
女 71
男 69
女 69
2022男 63
女 64
男 67
女 70
男 69
女 69
2021男 63
女 64
男 67
女 70
男 68
女 68
2020男 63
女 63
男 67
女 70
男 67
女 67

共学の人気が高まっていることもあり、近年偏差値の高まりが著しい学校です。

渋谷教育学園渋谷中学の受験者・合格者数・受験倍率推移

第1回

 受験者合格者倍率
2025
2024男 181
女 219
男 56
女 55
男 3.23
女 3.98
2023男 142
女 270
男 54
女 57
男 2.63
女 4.74
2022男 136
女 286
男 54
女 62
男 2.51
女 4.61
2021男 122
女 243
男 44
女 65
男 2.77
女 3.74
2020男 125
女 251
男 41
女 80
男 3.05
女 3.14
2019男 168
女 271
男 51
女 69
男 3.29
女 3.93
2018男 170
女 250
男 48
女 71
男 3.54
女 3.52
2017男 179
女 262
男 49
女 66
男 3.65
女 3.97
2016男 183
女 266
男 44
女 66
男 4.16
女 4.03

第1回は2016年頃に、倍率4倍を超える激戦となったことから、近年は男子の受験数が減りましたが、2022年は女子の倍率が4倍を超え、2023年には受験者数が過去最高となり、男女の倍率に大きく開きがありました。

第2回

 受験者合格者倍率
2025
2024男 445
女 287
男 146
女 71
男 3.05
女 4.04
2023男 455
女 332
男 149
女 72
男 3.05
女 4.61
2022男 408
女 345
男 169
女 73
男 2.41
女 4.72
2021男 410
女 303
男 185
女 78
男 2.22
女 3.88
2020男 342
女 342
男 173
女 85
男 1.98
女 4.02
2019男 397
女 337
男 156
女 66
男 2.54
女 5.11
2018男 387
女 310
男 158
女 68
男 2.45
女 4.56
2017男 374
女 319
男 157
女 64
男 2.38
女 4.98
2016男 443
女 343
男 158
女 75
男 2.80
女 4.57

第2回も第1回と同様にやや受験者数は減ってきている印象ではあります。しかしそれでも女子の倍率は4倍を超えているなど、2日の女子受験校として大変人気であることが窺えます。

渋谷教育学園渋谷中学の合格最低点・合格者平均点・受験者平均点

第1回【4科目】男子

 合格最低点(男)合格者平均点(男)受験者平均点(男)
平均179.8 (60%)198.5 (66%)168.5(56%)
2025
2024207221.3189.3
2023168185.2154.1
2022175189.1162.2
2021179
2020177
2019188
2018182
2017181
2016161

第1回【4科目】女子

 合格最低点(女)合格者平均点(女)受験者平均点(女)
平均190.9 (64%)199.7 (67%)169.6 (57%)
2025
2024211218.0188.4
2023180186.3155.8
2022192194.8164.6
2021189
2020188
2019199
2018197
2017192
2016170

第1回【算数】

 合格者平均点(男)合格者平均点(女)合格者平均点受験者平均点
平均66.4 (66%)64.8 (65%)65.6 (66%)53.2 (53%)
2025
202481.075.278.165.6
202352.049.750.839.0
202261.362.862.150.4
202164.660.862.548.3
202059.960.560.349.8
201979.479.679.566.2

第2回【4科目】男子

 合格最低点(男)合格者平均点(男)受験者平均点(男)
平均183.2 (61%)215.0 (72%)183.3 (61%)
2025
2024203222.9188.1
2023208223.5191.3
2022180198.5170.4
2021174
2020168
2019187
2018175
2017178
2016176

第2回【4科目】女子

 合格最低点(女)合格者平均点(女)受験者平均点(女)
平均191.8 (64%)216.8 (72%)180.1(60%)
2025
2024208222.9188.1
2023217226.2190.2
2022191201.3162.0
2021189
2020182
2019193
2018181
2017185
2016180

第2回【算数】

 合格者平均点(男)合格者平均点(女)合格者平均点受験者平均点
平均75.7 (76%)72.3 (72%)74.0 (74%)58.0 (58%)
2025
202481.073.577.363.4
202377.673.575.657.0
202266.864.165.547.7
202168.162.965.552.1
202078.175.877.059.1
201982.883.883.368.9

渋谷教育学園渋谷中学の科目別配点と試験時間

 点数制限時間
国語100点50分
算数100点50分
理科50点30分
社会50点30分

算国に大きく傾斜された配点となっています。

渋谷教育学園渋谷中学の算数の合格への寄与度

第1回

 合格者ー受験者算数の合格寄与度
 4科目算数
平均30.112.039.9%
2025
202430.812.540.6%
202330.811.938.5%
202228.611.741.0%
202114.4
202010.4

第2回

 合格者ー受験者算数の合格寄与度
 4科目算数
平均34.216.849.1%
2025
202434.813.939.9%
202334.118.654.5%
202233.717.7552.7%
202113.4
202017.85

渋谷教育学園渋谷中学の算数概観

渋谷教育学園渋谷中学 例年の大問構成と傾向

例年、以下のような構成になっています。これは第1回・第2回共通した傾向です。

大問特徴
1番6問の小問集合。(1)は計算問題。
文章題を1-2問含み、速さ・数の性質などの文章題と、平面・立体図形なども登場。
2-4番3つの大問。
「場合の数」「立体図形」「図形と点の移動」「速さ」などを筆頭とした重量級の問題。

詳しく、分析していきましょう。

渋谷教育学園渋谷中学の算数 分野単元別出題比率

ここから先は、過去10回分の過去問(1次試験・2次試験)の算数出題データを分野・難易度別に分析していきます。

まずは分野別の出題率から見ていきます。

1位:立体図形(20.6%)

2位:場合の数(19.6%)

「立体図形」と「場合の数」の2分野はほぼ毎年のように出題されている最頻出分野です。この2分野だけで全体の約4割を占めています。

3位:文章題(割合あり)

4位:図形と点の移動

5位:数の性質

6位:速さ

3位以降の4分野は10%程度で、大きな差はありません。以上の6分野を合計すると、全体の75%を超えることになります。7位の四則演算(ほぼ確実に得点できる)も加えると約80%に達するため、「渋渋の入試の8割はこの6分野と計算で決まっている、頻出分野が明確な学校である」と言っても過言ではありません。

付け加えると、集団塾の5年生や6年生で扱う頻度が高い「平面図形」や「規則性」は、得点できる受験生の差がつかないからか、ほとんどと出題されていません。

渋谷教育学園渋谷中学の算数 難易度比率

次はレベル別に見ていきましょう。

レベルA=受験者の大半が解ける
レベルB=合格者の大半が解ける
レベルCD=合格者でも解けない

レベルAが52%、レベルBが41%と、全体の9割以上が「合格者であれば解けるレベルのもの」で占められています。

合格最低点ラインは第1回、第2回ともに60%程度です。受験生は65%程度の得点を目指すことになろうかと思いますが、それはつまりレベルA全問とレベルBの3分の1を得点できれば良いということになります。

さらに算数で勝ちに行く場合、合格者平均70%(1日目)を目指すことになりますが、そうなるとレベルA全問とレベルBの半分が必要です。

いずれにせよ、合格を目指すのであれば、レベルBにリーチすることは避けては通れない道でしょう。

なお、同じ渋谷系の渋谷幕張では、レベルA 43% レベルB 44%であり、相当な難問も出題されることで有名です。割合で比較すると、渋谷渋谷の方が10%程度レベルA、つまり得点しやすい問題も含まれており、レベルCのような難問鬼問は比較的出題されていないと言えるでしょう。

渋谷教育学園渋谷中学の算数 難易度×単元比率

次はレベル別の頻出分野を見ていきましょう。まずはレベルA、受験生なら解けるレベルのもの、からです。

レベルAの5問に1問、つまり20%は「文章題(割合あり)」で占められています。単なる文章題ではなく、割合ありの文章題が頻出です。「文章題(割合なし)」は全体の0.5%とほとんど出題されていません。従って、渋渋志望者は「割合ありの文章題」を鉄壁と言える状態に仕上げましょう。

他にも最初に頻出分野として挙げさせていただいた「立体図形」「図形・点の移動」も、レベルAの高い出題割合を占めています。

文章題(割合あり)において、特筆すべき点は、「その分野におけるレベルA出題率の高さ」です。

もう少し詳しくお話しします。

「文章題(割合あり)」は10本の過去問中、全体で19.6%出題されているわけですが、その中のレベルAの出題を見てみるとなんと87%を占めています。(残りはレベルBです)

つまり、「文章題(割合あり)」が出題されるときはそのほぼ全てがレベルA(簡単)である可能性が高く、ここでとりこぼしてしまうことが大きな痛手になるでしょう。

文章題(割合あり)が出題されるのは、基本的には最初の小問集合です。ここで失点しないよう細心の注意、対策を行いましょう。(尚、後半の大問で出題された年もありますが、殆どがレベルAでした)

次に、先ほど同じくレベルA頻出である「立体図形」「点の移動」「場合の数」をご紹介致しましたが、分野内レベルA出題率はそれぞれ45%,53%,38%と軒並み低くなっています。つまりその分野の問題にはレベルB、レベルC級の難しい問題が含まれている可能性が高い、ということになります。

渋谷渋谷の入試問題では、超重量級(今回紹介している立体図形や点の移動、場合の数など)の大問を出題する際に、最初に小問を比較的多数用意しています。

これは、受験生に段階的に難易度の壁をのぼらせるためだと考えられます。大問の中の冒頭の小問は、どこの塾でも習うような単なる技術問題であったりするため、問題の難しそうな顔に怯まず、確実に得点しましょう。

次は、合否を分けるレベルBです。

以下の5分野が、レベルB全体の8割弱を占めています。全体の頻出6分野から文章題(割合あり)を抜いた5分野です。

1位:場合の数

2位:立体図形

3位:図形と点の移動

4位:速さ

5位:数の性質

合否を分けるような問題は、ほとんど上記の5分野で構成されている、つまり「渋谷渋谷頻出の5分野に特化した学習が合否を左右する」と言って差し支えないでしょう。

試しに過去問11本分(第1回7回分、第2回4回分)を振り返ってみたところ、全ての年度において大問の立体図形が出題されています。

場合の数は、11本中9本は場合の数が出題されています。出題されていない2年分のうち1回はかわりに思考力系の論理推理が出題されています。詳しくは後述いたしますが、渋谷渋谷の場合の数は思考力に寄っているため、結局のところ思考力系の大問はほぼ毎年出ているのです。

以上をまとめると、ほぼ毎年、立体図形と場合の数(≒思考力系)が狙われていることになります。

最後はレベルC(レベルD)です。

渋谷渋谷はそもそもレベルCの割合は7.9%と少なく、1年の中に1問あるかないか程度です。

なお、分野別で見てみるとレベルCもレベルBと同じように、「立体図形」や「場合の数」が上位を占めています。しかし、実のところ、約10年の間に、全く同じ技術を利用する立体図形の難問が3回出題されており、それが立体図形のレベルCになっているという経緯があります。詳しくは次の「渋谷渋谷の頻出分野対策」の中で触れさせていただきます。

渋谷教育学園渋谷中学の算数の対策

ここから先は、渋谷渋谷の合否を分けているレベル B、その中の上位3分野である「立体図形」「場合の数」「図形・点の移動」についてお話していきたいと思います。

渋谷教育学園渋谷中学の「立体図形」の対策

渋谷渋谷の立体図形は、一言で特徴を表すと「思考力」と「(やや高度な)技術」の両方の要素が問われる問題が出題されます。

どういうことなのか順を追ってお話ししてゆきます。

まず、最難関の立体図形が求める力は、大きく2つ、「(高度)技術」と「立体を捉える思考力」に分かれます。

立体図形という分野の特性上、ほぼ全ての問題に、技術的な要素と立体を把握する要素の両方が入っています。しかし、本質の難しさがどちら・または両方にあるのか、高度技術なのか、思考力なのか、という点で「思考力」と「高度技術」を分けて考えることができます。

「高度技術の立体図形」とは、例えば切断であれば切断面の様子を、投影図であれば投影された様子を、1つ1つの点や辺に注目し、技術を複数回、細かく丁寧に適用することで解決してゆく問題です。問題の山場は「そもそも高度な技術を理解できているか?」と「立体を面に分解して、解像度高く使いこなせるか?」という点にあります。余談ですが、渋幕ではこのような問題が多く出題されます。

「思考力の立体図形」は、「立体をどのように見る(視る)のか」、つまり3次元中の想像力や把握力を問われる問題のことを指しています。

~~~~~~~~

さて、渋谷渋谷の立体図形に話を戻しましょう。

先ほど申し上げたとおり、渋谷渋谷の立体図形は、「思考力」と「(やや高度な)技術」のハイブリッド型です。

具体的に問題を見てみましょう。

以下は、2018年第2回の問題の問題と解説動画です。

(1) 解説動画

(2)(3) 解説動画

(4) 解説動画

この問題は、”綺麗な立体図形の中の面や辺の中心を結ぶことで綺麗な立体ができる”(入れ子構造)という技術を利用します。解法ポイント動画はコベツバ過去問解説Top Gun特訓に掲載されています。

しかし、技術を知っていれば一発で答えが出るのか?と言われればそうではありません。典型題ではない以上、自分で”立体の中に立体がこんなふうに入っていて・・”ということをイメージする必要があります。

立体図形の技術一辺倒の問題は「立体図形といえば、平面に落として技術を使って長さを求めて・・」という思考回路でも解ける可能性が高いのですが、その方針だけでは今回の問題に隠れたメッセージである”入れ子構造”に気づくことはできないでしょう。

上記は1例であり、その他も、コベツバの渋谷渋谷の過去問解説動画において「ポイント(体系的で他の問題にも通じる技術)」を定めづらい、つまり立体把握を求めてくる問題が数多く出題されています。

立体思考力の要素は、いわゆる立体把握能力に近いものになりますので、これを読んでおられる志望者の方は「それでは、いくら努力も素養や幼少時の経験次第なのではないか(今更どうにもならないのでは?)」と不安になられる方もいらっしゃるかもしれません。

しかし、思考力系の立体図形は、定石が存在します。技術×思考力要素を備た問題を複数経験しておくことで、そもそも「立体図形を把握する切り口」を脳内に複数持つことができるでしょう。

他の思考力の問題が適切な経験で伸ばせるのと同じように、立体図形の把握方法もよくある切り口をたくさん経験しておくことで引き出しを増やすことができるのです。

関連記事

この記事では、中学受験算数で大切になる「思考力」とは何か? 近年のトレンドと学校別の思考力のパターン、そしてその伸ばし方についてお話しいたします。時に、思考力は「地頭」とほぼ同一のものとして語られます。「思考力を伸ばす」と[…]

さて、次に、立体図形が頻出分野である他の最難関校と渋谷渋谷の立体図形を比較してみましょう。

思考力のみ思考力×技術ハイブリッド高度技術標準的な技術
栄光灘・渋谷渋谷灘・開成・渋谷幕張
・桜蔭・聖光学院・洛南
(豊島岡・海城・早実)※
早稲田・甲陽学院
※ その学校において、その問題の山場が得点できなくても他が得点できていれば、合格できる。
もちろん頻出であるため得点できているとアドバンテージになるが、算数が不得手なお子様であれば、山場直前の小問さえ得点できれば良い。

まず関東の中では、渋谷渋谷と栄光学園以外、思考力の立体図形が頻出の学校はありません。しかし、この2校の問題の共通点は少なく、栄光は純粋な思考力系の立体図形を好み、栄光流のアレンジが独特であるがゆえに、渋谷渋谷対策として問題を利用することの効果はそこまで高くはありません。

渋谷渋谷は灘中の算数をベンチーマークしている可能性がある(共通点①)

次に「思考力×技術ハイブリッド」の学校である、渋谷渋谷と灘ですが、これは、渋谷渋谷が灘の立体(その中でも思考力要素が強いもの)をベンチマークしている可能性があると考えられます。

例えば、先ほどご紹介した「入れ子構造」ですが、灘では2009年1日目13番で出題されていました。(近年では2019年も出題されています)

灘中学2009年1日目13番

解説動画

渋谷渋谷は灘中の算数をベンチーマークしている可能性がある(共通点②)

次に、灘は2020年、2014年、2011年(全て1日目)と複合図形を回転させた体積を求めさせる問題で「パップス・ギュルダンの定理」をうまく活用して解くと短時間で解答に到達できる問題を出題しています。

灘中学2011年1日目12番

解説動画(②のみ)

渋谷渋谷も2021年(第1回)、2016年(第1回・第2回ともに)に出題歴があります。

渋谷渋谷2016年第1回3番(3)

解説動画((3)のみ)

「パップス・ギュルダンの定理」を集中的に狙ってくる最難関・難関校は々以外の関東の学校には存在しません。全国的に見ても突出して灘と渋谷渋谷で出題されている技術です。

以上の2点から、渋谷渋谷は灘の立体図形を一部参考にして、渋谷渋谷の受験層や味わいにアレンジ・調節しているのではないか?と推測を立てることができます。

▼渋谷渋谷の立体図形の対策

ここから先は、実際に渋谷渋谷志望のお子様で算数のレベルB 第1位の立体図形の具体的な対策についてお話ししていきます。

まず最初に、いずれの教材においても、立体図形に向き合うときは、渋谷渋谷の立体で求められる「丁寧に立体の状態をイメージする」ことが重要です。例えば、切断であれば、切断面の様子をしっかり立体に書き込むこと、展開図や展開図からできる立体を実際にイメージしながら作図してゆくことです。

そこまで丁寧に考えなくても正解できる問題もあるかもしれませんが、あえて切断面や展開図、立体をイメージしておくことが大切です。

次に、実際にどのような問題に当たっていけば良いか、というお話です。

ここまでご紹介したように渋谷渋谷の立体図形は、関東の他メジャー校の立体図形とやや傾向が異なり、灘、その中でも思考力要素が絡んだものを主にをベンチマークしている(可能性がある)と思われる問題が出題されています。

例えば、先ほどご紹介した「パップス・ギュルダンの定理」は、関東系の大手塾では共通・志望校別のカリキュラムで体系的に習得する機会のあるお子様はほとんどおられません。その1つ前でご紹介した「入れ子構造」はカリキュラム上、触れる機会はゼロではないものの、他の関東の難関校でメジャーな論点とは決して言えませんから、より関東メジャーである切断系の比重が高く設定されていることは当然と言えるでしょう。

※もちろん、講師オリジナルプリント、算数を別軸で特訓されているお子様、渋谷渋谷や灘だけに特化したカリキュラムでは学んでいらっしゃるお子様もいらっしゃいますが、全体の中のごく一部でしょう。

それゆえ、一般的に、渋谷渋谷志望者のお子様が立体図形に対応できるレベルまで引き上げるためには、家庭での対策が鍵を握り、具体的に方法としては以下の3つの手段が考えられます。

お子様が算数が得意であれば、灘の立体図形に挑戦する価値は非常に高くお勧めできる方法です。ただし、灘の立体図形の中には相当難しい問題も含まれていますから、効果は高いものの、算数がそこまで得意でないのであれば、ハードルが高すぎる可能性も十分考えられます。

もしそうなら、渋谷渋谷の過去問の立体図形だけを過年度に遡って解いていくこと(※)や、または、最難関含め王道の立体を厳選し、体系的に学ぶことができるTop Gun特訓などをご利用ください。

※ 渋谷渋谷の過去問は取り組む方がほとんどでしょうけれども、例えば10年分の1日目・2日目、時間の都合上、全ての年度ができなかったとしても、立体図形に絞って解いていくことが良いでしょう。

渋谷渋谷レベルの立体図形に挑戦する前に

ただし、ここまででお話ししたものは、発展レベルの問題です。もしも立体の標準・応用レベルができていなままこのレベルに挑戦すると、ほとんど太刀打ちできない問題ばかりです。

レベル感の基準として、例えば、サピックスの6年平常・土曜特訓のレベル(基礎〜標準メイン)を遥かに超えていますし、四谷大塚の予習シリーズで学習されている方は演習問題集の中の難問や応用演習問題集まである程度余裕を持って取り組んでいなければ、太刀打ちできないでしょう。

それならば、標準・応用レベルが自然に身につく6年の秋までは発展レベルは脇に置いて、12月や1月の直前期にTop Gun特訓や過去問を追い込めば間に合うのか?

と問われると、間に合うケースもあれば、残念ながら間に合わないケースもあります。

なぜなら、それはつまり立体図形の基礎から発展までをほぼ半年間で一気に駆け上がることになるので、難易度の高い壁を超えなければなりません。もし、できるのであれば、立体図形の基礎・標準、できれば応用レベルは、6年生前半までに抑えておくことが望ましいです。

例えば、「図形の必勝手筋」や「コベツバweb授業 分野別教材 立体図形」、などで、立体図形のやや高度な技術、しかし難関・最難関で必須の技術を体系的に学習してから、上記の渋谷渋谷の立体図形に特化した対策を行うと良いでしょう。

渋谷教育学園渋谷中学の「場合の数」の対策

次は渋谷渋谷のレベルB 第2位の頻出分野「場合の数」の対策方法についてお話ししていきます。

渋谷渋谷の場合の数は、読解、誘導、場合分け、調べ上げを要求する傾向にあり、特に1日目(2月1日入試)の方が超大型の問題が出題されています。

※ 2日目にも場合の数は出題されていますが、1日目よりも分量・難易度としては軽い傾向にあります。

具体的に見てみましょう。

以下の問題では、長文の中で与えられるヒント=場合分けにしたがって、何通りあるかどうか、を調べていく問題です。

渋谷渋谷 2020年 第一回 3番

あ〜え までの解説動画(続きは割愛)

今回の問題では、長文の中で場合わけの切り口が提供されていましたが、問題によっては、自分でどのような切り口で場合わけを行うことで「漏れなく、被りなく」調べられるかどうかを考える問題も出題されています。

同じく場合の数が頻出の渋谷幕張と渋谷渋谷の比較

実は、同じ渋谷教育学園系列の渋谷幕張の頻出分野の1つが「場合の数」です。しかし、渋谷渋谷と渋谷幕張ではやや傾向が異なります。

渋谷幕張では、同じ「場合の数」と言っても、オチさえ分かれば解決が容易な問題が多いです。論理立てた場合わけや、やや高度な技術を適用することができるか?を問いかけてくるものが多いので、気付きさえすれば、そこまで困難に感じることはありません。

ところが、渋谷渋谷は同じ場合の数と言っても、特に1日目は手を動かし、場合分け×調べ上げの極致を要求される問題です。最終的にはその問題に正解できるであろう算数が得意なお子様でも、途中で気持ちが萎えてしまう可能性があるほど、苦戦する内容なのです。確かに解法の技術も必要ではあるのですが、技術だけでスッと正答できないところが渋谷渋谷の場合の数の特徴です。

同じ傾向の問題は、男子御三家 武蔵の場合分け・論理推理です。同じく場合分け×調べ上げの極致を要求される問題であり、もはや最後の小問は捨て問題になることがほとんどですが、渋谷渋谷と似た傾向を持っています。

渋谷渋谷の場合の数の具体的な対策

まず大前提として、塾の平常授業で習うレベルの場合の数の技術は、しっかり押さえましょう。いくら最終地点は調べ上げが大変とはいえ、そもそもの前提となるオーソドックスな場合分けの考え方が使いこなせていなければ、高い壁に挑むことはできません。

その上で、低学年のうちから、塾テキストに掲載されている、思考力系の問題に関しては、積極的に取り組んでいきましょう。

しかし、通常の塾カリキュラムでは、思考力系の問題はそこまで多くないことがほとんどであり、十分な練習量が確保できない可能性が高いです。なので、どこかの段階で追加の訓練を行うことが望ましいです。(思考力であるため、必ずしも高学年になってから取り組まなければならない、と言うことはありません。)

具体的には以下のような教材になります。

※渋谷渋谷や武蔵の過去問はコベツバ過去問動画解説で解説が掲載されています。

思考力問題は技術系と異なり、「ここまで習得すれば完成」と言う全貌はありません。その思考回路を複数回経験したり、良い手筋を真似することで力がついていくものです。そのため、上記のすべてに取り組む必要はありません。お子様のフェーズに合わせて適切なものを選んでいただければと思います。

関連記事

この記事では、中学受験算数で大切になる「思考力」とは何か? 近年のトレンドと学校別の思考力のパターン、そしてその伸ばし方についてお話しいたします。時に、思考力は「地頭」とほぼ同一のものとして語られます。「思考力を伸ばす」と[…]

「中学への算数」を用いる場合は、満遍なく全分野を1年分そろえるのではなく、場合の数に集中アタックするために過年度に遡って1月号だけを購入しておきましょう。そもそも「中学への算数」が「今年度の入試問題」を集めて毎月分野別の月刊紙を発行しているため、1年分の場合の数だけでは、種類の網羅性がやや欠けてしまうのです。また、渋谷渋谷にフォーカスするためには、技術一発のコンパクトな問題ではなく、なるべく大問級の調べ上げが求められるものに取り組みましょう。

渋谷教育学園渋谷中学の「図形・点の移動」の対策

まず最初に、直近の「図形の移動」と「点の移動」の出題履歴を見てみましょう。

▼図形の移動:4回

うちレベルA 56%>レベルB 44%

  • 2023年第1回:転がり移動の作図
  • 2020年第2回:平行移動の面積・長方形の面積二等分線
  • 2019年第1回:扇型回転移動
  • 2017年第2回:回転移動・回転体面積

▼点の移動:4回

うちレベルA 29%<レベルB 71%

  • 2024年第1回:真ん中影武者、読解、試行検証(A1、B3)
  • 2023年第1回:読解、規則に従う、規則に従って整理、着眼点を探す、試行検証(A1、B3)
  • 2020年第1回:同時スタート戻り=リピート開始・長方形の面積二等分線(A1,B2)
  • 2018年第1回:①秒後解法・長方形の面積二等分線(A1,B2)

図形の移動がより多く出題されているものの、難問は少ないです。点の移動は出題頻度はやや少なくとも出題される場合は難問が多いです。2年に1回はどちらかが出題されており、小問も含めると出題される確率が高いことを考えると、受験生は「点の移動」「図形の移動」ともに、対策を行う必要があるでしょう。

渋谷渋谷志望者への注意点

ちなみに、渋谷渋谷は「図形・点の移動」がレベルB頻出第3位に入っていますが、同様の傾向を持った学校はほとんど見たことがありません。(1校例外があり、後述いたします)

※多少の差はありますが、「速さ」「立体図形」「論理推理や場合の数」「数の性質」が最難関・難関校の主流の大問分野です

多くの最難関・難関校で出題頻度が低いので、塾の共通カリキュラムでは「点の移動」や「図形の移動」はメジャーな分野として扱われていません。

例えばサピックスでは割合を習ってから=入試に通用する点の移動のカリキュラムは6年生で1回、同じく図形の移動にフォーカスした単元も5年生の1回と6年後期の1回だけであり、その後は速さや図形問題の1種類として登場することになります。

従って、渋谷渋谷の志望者は「図形の移動」と「点の移動」については塾テキストを繰り返し完璧にすることは最低限必要になるでしょう。

長方形の面積二等分線」に注目

次に、特筆すべきことは、「長方形の面積二等分線」と言うポイント(解法)が両分野に登場していることです。これまでに記載があるだけで3回、加えて、2016年第2回大問2番(1)にも「長方形の面積二等分線」の考えを使う場合の数と平面図形を組み合わせた問題がありました。

つまり、10回の入試の中で合計4回、「長方形の面積二等分線」の考えを活用できるかどうかを問われる問題が出題されていることになり、出題頻度の高さは他校の群を抜いています。

長方形の面積二等分線」と言うポイント自体は、長方形の面積を二等分する直線は必ず対角線の交点(長方形の中心)を通る、と言うシンプルな原則です。

しかし、ほとんどの塾カリキュラムでの登場は易しい問題での登場にとどまり、実際に入試の大問の中で、問題解決の手段として活かすような実践レベルの問題はほとんどありません。(そもそもこの技術は他校での登場頻度が低いので、塾生共通テキストを作成するのであれば、当然といえば当然なのですが。)

受験生の盲点になっている可能性があるからこそ、渋谷渋谷は定期的に出題し続けているのではないかと推測され、過去問をしっかり解いて、やり直してきたお子様であれば気付くであろう論点になっています。学校側のメッセージとしてはしっかり過去問を解いてきたお子様を合格させたいのではないでしょうか。

渋谷渋谷と筑駒 「図形の移動・点の移動」の共通点。

渋谷渋谷と類似して「図形と点の移動」(特に点の移動)を出題する学校は、筑駒です。

筑駒では過去11年間に2021年・2019年・2016年・2011〜2013年と合計6回の出題履歴があり、利用されているポイントなども渋谷渋谷と類似しています。

※図形の移動に着目すると、頻出の学校は駒場東邦ですが、駒場東邦独特の難問が多いため、渋谷渋谷受験生が取り組むにはやや対策効果が低いでしょう。

渋谷渋谷の「図形の移動・点の移動」の対策

まずは、前述したように、渋谷渋谷側の「図形の移動・点の移動」では繰り返し出てきている論点があるため、過去問をしっかり解き切ることが重要です。渋谷渋谷が本命なのであれば、「図形の移動・点の移動」の分野だけでも、第1回、第2回ともに10年分、経験を重ねておきましょう。

その上で、「図形の移動」については、これまでに紹介した「立体図形」「場合の数」と比べて問題のレベルが決して高すぎると言うことはないため、塾の共通テキスト(応用まで)やコベツバweb授業の応用編までを仕上げていれば、技術の取りこぼしはほとんどないでしょう。

「点の移動」については、前述したように出題されるときは難易度の高い問題が出題される可能性が高いです。と言っても筑駒ほどの難易度ではありません。渋谷渋谷が応用レベルだとした場合、筑駒は同じ方向性の発展レベルである、と言うことなのです。

対策としては、渋谷渋谷を算数で引っ張って合格する戦略なのであれば、筑駒の「点の移動・図形の移動」に取り組みましょう。渋谷渋谷の問題を軽々と回答できるでしょう。

算数は他科目の足を引っ張らない程度に仕上て合格する戦略であれば、筑駒の「点の移動・図形の移動」に取り組むことは些か難しすぎるかと思います。それならば、図形の移動と同様に点の移動もコベツバweb授業の応用編レベルまで仕上げておくか、塾テキストを何周も回しておくことが良いでしょう。(市販の参考書でも点の移動へのフォーカスは決して高くないため、どうしても対策教材の選択肢は限られてしまいます。)

渋谷教育学園渋谷中志望者向けの対策・動画サービス

中学受験コベツバでは、上記の分析・出題傾向を踏まえて、渋谷教育学園渋谷中学志望の子供たちを対象に、以下のサービスを配信をしております。毎年、多数の渋谷教育学園渋谷志望者が算数強化を目的にコベツバを活用して、渋谷教育学園渋谷中に合格しています。

🌸合格者の声🌸はこちら